Hilbert’s tenth problem for rational function fields in characteristic $2$
نویسندگان
چکیده
منابع مشابه
Hilbert’s Tenth Problem for Algebraic Function Fields of Characteristic 2
Let K be an algebraic function field of characteristic 2 with constant field CK . Let C be the algebraic closure of a finite field in K. Assume that C has an extension of degree 2. Assume that there are elements u, x of K with u transcendental over CK and x algebraic over C(u) and such that K = CK(u, x). Then Hilbert’s Tenth Problem over K is undecidable. Together with Shlapentokh’s result for ...
متن کاملHilbert’s Tenth Problem for Function Fields of Characteristic Zero
In this article we outline the methods that are used to prove undecidability of Hilbert’s Tenth Problem for function fields of characteristic zero. Following Denef we show how rank one elliptic curves can be used to prove undecidability for rational function fields over formally real fields. We also sketch the undecidability proofs for function fields of varieties over the complex numbers of di...
متن کاملul 2 00 2 HILBERT ’ S TENTH PROBLEM FOR ALGEBRAIC FUNCTION FIELDS OF CHARACTERISTIC 2
Let K be an algebraic function field of characteristic 2 with constant field C K. Let C be the algebraic closure of a finite field in K. Assume that C has an extension of degree 2. Assume that there are elements u, x of K with u transcendental over C K and x algebraic over C(u) and such that K = C K (u, x). Then Hilbert's Tenth Problem over K is undecidable. Together with Shlapentokh's result f...
متن کاملN ov 2 00 2 HILBERT ’ S TENTH PROBLEM FOR ALGEBRAIC FUNCTION FIELDS OF CHARACTERISTIC 2
Let K be an algebraic function field of characteristic 2 with constant field C K. Let C be the algebraic closure of a finite field in K. Assume that C has an extension of degree 2. Assume that there are elements u, x of K with u transcendental over C K and x algebraic over C(u) and such that K = C K (u, x). Then Hilbert's Tenth Problem over K is undecidable. Together with Shlapentokh's result f...
متن کاملHilbert’s Tenth Problem for function fields over valued fields in characteristic zero
Let K be a field with a valuation satisfying the following conditions: both K and the residue field k have characteristic zero; the value group is not 2-divisible; there exists a maximal subfield F in the valuation ring such that Gal(F̄ /F ) and Gal(k̄/k) have the same 2-cohomological dimension and this dimension is finite. Then Hilbert’s Tenth Problem has a negative answer for any function field...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1994
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1994-1159179-6